
1. Introduction
Lidar and radar systems provide unrivaled monitoring of the middle and upper atmosphere, allowing for 
high-temporal/spatial resolution measurements of atmospheric parameters and constituents, which in turn enable 
the quantification of complex processes like atmospheric fluxes, constituent transport, turbulence, and gravity 
waves (e.g., Gardner & Liu, 2010; Hocking, 1996; Lu et al., 2015). These systems can observe a wide range of 
altitudes by taking advantage of various signal-return mechanisms (e.g., Baumgarten, 2010; Chu et al., 2020; 
Chu, Yu, et al., 2011; Kaifler & Kaifler, 2021), which allows detailed studies into vertical coupling, analyzing 
how atmospheric processes develop as they travel over a wide range of altitudes. Such sophisticated systems have 

Abstract Random-noise-induced biases are inherent issues to the accurate derivation of second-order 
statistical parameters (e.g., variances, fluxes, energy densities, and power spectra) from lidar and radar 
measurements. We demonstrate here for the first time an altitude-interleaved method for eliminating such 
biases, following the original proposals by Gardner and Chu (2020, https://doi.org/10.1364/ao.400375) who 
demonstrated a time-interleaved method. Interleaving in altitude bins provides two statistically independent 
samples over the same time period and nearly the same altitude range, thus enabling the replacement of 
variances that include the noise-induced biases with covariances that are intrinsically free of such biases. 
Comparing the interleaved method with previous variance subtraction (VS) and spectral proportion (SP) 
methods using gravity wave potential energy density calculated from Antarctic lidar data and from a forward 
model, this study finds the accuracy and precision of each method differing in various conditions, each with 
its own strengths and weakness. VS performs well in high-SNR, yet its accuracy fails at lower-SNR as it often 
yields negative values. SP is accurate and precise under high-SNR, remaining accurate in worse conditions than 
VS would, yet develops a positive bias under low-SNR. The interleaved method is accurate in all SNRs but 
requires a large number of samples to drive random-noise terms in covariances toward zero and to compensate 
for the reduced precision due to the splitting of return signals. Therefore, selecting the proper bias removal/
elimination method for actual signal and sample conditions is crucial in utilizing lidar/radar data, as neglecting 
this can conceal trends or overstate atmospheric variability.

Plain Language Summary Second-order statistics like atmospheric wave-induced variances or 
fluxes of physical parameters calculated from lidar or radar data would have positive biases if detection-noise-
induced variances or fluxes were not properly eliminated. If such biases remained, not only would atmospheric 
variances be overestimated, implying unrealistic wave activity and growth rates, but certain phenomena could 
be concealed, presenting misleading pictures of the atmospheric observations. While various methods have 
been developed to account for this, all have limitations to their use. This study summarizes the development, 
theory, and application procedures for three different methods, namely conventional variance subtraction, the 
spectral proportion method, and the interleaved method, which can be used to correct such biases. The newest 
of these methods is adapted from operating on the data time-wise into an altitude-wise approach, improving its 
applicability. The performances of the three methods are compared by calculating the variance-based gravity 
wave potential energy density derived from lidar data taken at McMurdo, Antarctica. Their accuracies are 
assessed by using a forward model. This study aims to guide future research by providing information on how 
and when to apply each of these methods in order to enhance the outcomes of existing and future lidar/radar 
systems and datasets.
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led to decades of impressive remote sensing campaigns (e.g., Li et al., 2020; She et al., 2019; Stober et al., 2021), 
yet to make full use of the data, advances must be made in data handling. Advances in science inevitably require 
the use of second-order statistics such as variances and fluxes, which are inherently biased by random-noise in 
the data generated during the detection processes (e.g., Chu et al., 2018; Gardner & Liu, 2014; Whiteway & 
Carswell,  1995). These biases grow increasingly problematic when analyzing the higher or wider reaches of 
lidar and radar data. To deal with these biases, various correction methods have been developed over the years 
(e.g., Chu et al., 2018; Gardner & Chu, 2020; Whiteway & Carswell, 1995), each with its own advantages and 
disadvantages. These methods have not yet been compared side-by-side to assess their effectiveness under various 
conditions, which are therefore the subject of this work.

This study focuses on lidar-measured variance and covariance, but the same principles apply when calculating 
other second-order statistics using radar and lidar data. Variance is a statistic dependent on the perturbation of a 
value from its mean, so it is important to understand the anatomy of the perturbation, which can be represented as

𝑟𝑟′Total(𝑧𝑧𝑧 𝑧𝑧) = 𝑟𝑟(𝑧𝑧𝑧 𝑧𝑧) − 𝑟𝑟0(𝑧𝑧) = 𝑟𝑟′(𝑧𝑧𝑧 𝑧𝑧) + Δ𝑟𝑟(𝑧𝑧𝑧 𝑧𝑧) (1)

where the stand-in variable 𝐴𝐴 𝐴𝐴 represents an arbitrary atmospheric parameter (such as density, temperature, zonal, 
meridional, or vertical wind, etc.) and 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 represent altitude and time, respectively. Here, 𝐴𝐴 𝐴𝐴′Total is the total 
measured perturbation that consists of two components: 𝐴𝐴 𝐴𝐴′ which is the perturbation caused by atmospheric 
waves, and 𝐴𝐴 Δ𝑟𝑟 which is the noise-induced perturbation. The 𝐴𝐴 𝐴𝐴′Total is found by subtracting the mean 𝑟𝑟0(𝑧𝑧) = 𝑟𝑟(𝑧𝑧𝑧 𝑧𝑧) 
from 𝐴𝐴 𝐴𝐴 , where the overbar denotes the sample time average over the chosen observational period. It is worth not-
ing that for some real observations it may be suitable to subtract the sample median, instead of the sample mean, 
as the median can be more robust than the mean and less biased by outliers.

If calculating the variance of wave-induced perturbation Var[𝑟𝑟′(𝑧𝑧)] ≃ [𝑟𝑟′(𝑧𝑧𝑧 𝑧𝑧)]2 using the measured perturbation 
𝐴𝐴 𝐴𝐴′Total , then the resultant 𝐴𝐴 Var(𝑟𝑟′Total) would contain both wave-induced variance and noise-induced variance, as seen 

in the right hand side of Equation 2

Var[𝑟𝑟′Total(𝑧𝑧)] = [𝑟𝑟′Total(𝑧𝑧𝑧 𝑧𝑧)]
2 = (𝑟𝑟′ + Δ𝑟𝑟)2 = (𝑟𝑟)′2 + (Δ𝑟𝑟)2 + 2𝑟𝑟′Δ𝑟𝑟 (2)

On the righthand side of Equation 2, the second term is the noise-variance Var[Δ𝑟𝑟(𝑧𝑧)] ≃ [Δ𝑟𝑟(𝑧𝑧𝑧 𝑧𝑧)]2 and the third 
term is the cross-term between the wave-induced and noise-induced perturbations. Because 𝐴𝐴 𝐴𝐴′ and 𝐴𝐴 Δ𝑟𝑟 are independ-
ent and 𝐴𝐴 Δ𝑟𝑟 is random and possesses a zero-mean, the expectation of the cross term 𝐴𝐴 𝐴𝐴[2𝑟𝑟′Δ𝑟𝑟] = 𝐴𝐴[2𝑟𝑟′] ⋅ 𝐴𝐴[Δ𝑟𝑟] = 0 , 
that is, this cross-term will vanish when averaging over a large number of samples. However, the noise-variance 
term 𝐴𝐴 Var(Δ𝑟𝑟) will remain and contribute a positive bias. Such a bias must be corrected to accurately estimate the 
wave-induced variance. It is important to note that all the overbars above represent the sample average over time, 
not ensemble average (e.g., Gubner, 2006). Statistics performed in this kind of geophysical studies have assumed 
that the sampled perturbations induced by atmospheric waves arise from a stationary, ergodic random process. 
Therefore, the sample average can be used to approximate the ensemble average (Gardner & Chu, 2020), and 
in this case, the variance computed as the sample average like above can approximate the ensemble expectation 
of the variance, where “variance” is treated as a signal representing the wave strength, in the limit of very large 
number of samples. However, the limited number of samples not only differentiates computed variance from the 
theoretical expectation of signals but also introduces another consequence—the cross-term may not approach 
zero enough, adding additional uncertainties to the estimate of wave-induced variance.

The most direct way to isolate (�′)2  is to estimate (Δr)2 at each altitude and then subtract it from the total var-
iance. As the cross-term approaches zero due to non-correlation after averaging over sufficient samples, only 
the wave-induced variance will remain. This approach is named the variance subtraction method (e.g., Duck 
et al., 2001; Whiteway & Carswell, 1995). Estimating this term becomes problematic in low-SNR conditions, as 
large uncertainties in the estimation often result in the estimated variance-bias being greater than the geophysical 
variance itself, yielding a physically-impossible “negative variance” when the noise term is subtracted.

To overcome this issue, Chu et al. (2018) developed a solution called the spectral proportion method, where Mon-
te Carlo simulations based on parameter uncertainties are used to estimate the wave-occupied proportion 𝐴𝐴 𝐴𝐴(𝑧𝑧) in 
the total 𝐴𝐴 Var(𝑟𝑟′Total) at each altitude. Then the total variance is scaled down to estimate 𝐴𝐴 Var(𝑟𝑟′) = 𝑝𝑝(𝑧𝑧)Var(𝑟𝑟′Total) . By 
this method, there will be no negative variance induced by the waves. This technique may overestimate 𝐴𝐴 Var(𝑟𝑟′) in 
high-noise scenarios as the uncertainty in determining 𝐴𝐴 𝐴𝐴(𝑧𝑧) increases substantially.
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Gardner and Chu (2020) developed a new approach named the interleaved method. In this method, the return 
photon counts are split into two separate but interleaved samples so that two statistically independent samples 
probe the same air parcel over the same time period. Consequently, the variance in Equation 2 is substituted with 
a covariance between these two samples (see Section 2.3 for details) which no longer contains the noise-induced 
bias once a statistically-sufficient sample size is used. This method improves the accuracy of the variance esti-
mate by eliminating the noise-induced bias yet decreases the precision both through increased uncertainty caused 
by photon count splitting and by any remaining terms containing the noise-induced perturbations which have not 
approached zero under a limited sample size.

Since each approach has strengths and weaknesses, this paper compares these three methods in terms of their 
accuracy and precision using Antarctic lidar data as well as a forward model. The lidar data used here are the 
Rayleigh scattering signals collected with an Fe Boltzmann lidar from 2011 to 2020 at the Arrival Heights Ob-
servatory near McMurdo Station (Chu, Huang, et al., 2011; Chu et al., 2020; Chu, Yu, et al., 2011). Although 
these techniques are demonstrated on lidar measurements, they can be applied to radar data as both are similarly 
affected by noise-induced biases in higher-order parameters. Additionally, this paper demonstrates an alternative 
way to apply the interleaved method by interleaving in altitude as opposed to time-interleaving as initially demon-
strated in Gardner and Chu (2020).

2. Three Methodologies
This paper calculates gravity wave potential energy mass density (𝐴𝐴 𝐴𝐴pm ) to demonstrate these methods, as it is di-
rectly proportion to the atmospheric wave-induced variance discussed in the introduction and it has been studied 
extensively using lidar. 𝐴𝐴 𝐴𝐴pm is calculated as

�pm(�) =
1
2

[

�(�)
�(�)

]2

⋅
Var[�′(�)]
�2Bkg(�)

 (3)

where 𝐴𝐴 𝐴𝐴(𝑧𝑧) is gravitational acceleration and 𝐴𝐴 𝐴𝐴Bkg(𝑧𝑧) is the background value of the parameter. For Equation 3 spe-
cifically, 𝐴𝐴 𝐴𝐴 must be either atmospheric temperature or density by the definition of 𝐴𝐴 𝐴𝐴pm. 𝐴𝐴 𝐴𝐴(𝑧𝑧) in Equation 3 is the 
buoyancy frequency and its square is defined as below

�2(�) = −�(�)

[

1
����(�)

�����(�)
��

+
�(�)
��2(�)

]

=
�(�)

�Bkg(�)

[

��Bkg(�)
��

+
�(�)
��

]

 (4)

𝐴𝐴 𝐴𝐴2 can be calculated either from temperature gradient or from atmospheric density gradient and speed of sound 
𝐴𝐴 (𝑐𝑐𝑠𝑠 =

√

𝑐𝑐𝑝𝑝
𝑐𝑐𝑣𝑣
𝑅𝑅 ⋅ 𝑇𝑇Bkg). Here, 𝐴𝐴 𝐴𝐴Bkg(𝑧𝑧) is the background temperature, 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧) is the background density, and 𝐴𝐴 𝐴𝐴𝑝𝑝 and 𝐴𝐴 𝐴𝐴𝑣𝑣 

are the specific heat at constant pressure and constant volume, respectively. We use the density-based 𝐴𝐴 𝐴𝐴2 calcu-
lation for estimating 𝐴𝐴 𝐴𝐴pm from density, and the temperature-based 𝐴𝐴 𝐴𝐴2 to calculate 𝐴𝐴 𝐴𝐴pm from temperature, though 
the two yielded nearly identical results.

In practice, we cannot calculate the 𝐴𝐴 𝐴𝐴′ term directly but must estimate it from 𝐴𝐴 𝐴𝐴′Total , meaning that the resulting total 
𝐴𝐴 𝐴𝐴pm is proportional to 𝐴𝐴 Var(𝑟𝑟′Total) , that is, 𝐴𝐴 𝐴𝐴pm,Total ∝ Var(𝑟𝑟′Total) which includes the 𝐴𝐴 Δ𝑟𝑟 terms:

�pm,Total(�) =
1
2

[

�(�)
�(�)

]2

⋅
1

�2Bkg(�)

{

Var[�′(�)] + Var[Δ�(�)] + 2 ⋅ [�′(�, �) ⋅ Δ�(�, �)]
}

. (5)

In Equation 5, the last two terms are not wave-induced but introduced by noise, with the second introducing a 
positive bias and the third term introducing additional noise. Although 𝐴𝐴 𝐴𝐴pm is used as the demonstration here, 
atmospheric kinetic energy 𝐴𝐴 𝐴𝐴𝑘𝑘 has similar issues with noise-induced bias, as �� ∝ 1

2
[(�′)2 + (�′)2] where 𝐴𝐴 𝐴𝐴′ and 𝐴𝐴 𝐴𝐴′ 

are the wave-induced wind perturbations, and therefore can be treated similarly to 𝐴𝐴 𝐴𝐴pm .

2.1. Noise-Variance Subtraction

As seen in Equation 5, when the 𝐴𝐴 𝐴𝐴pm is calculated using 𝐴𝐴 𝐴𝐴′Total , there are noise terms present alongside the wave-in-
duced 𝐴𝐴 𝐴𝐴pm. Even after averaging sufficient samples to drive the third term of Equation 5 to zero, there is still a 
bias caused by the noise-induced variance. In response, the noise-variance subtraction method was introduced, 
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which estimates and subtracts the 𝐴𝐴 Var(Δ𝑟𝑟) term from the total variance. Whiteway and Carswell (1995) derived 
the following expression for the noise-variance:

VarVS[Δ�(�)] = Δ�(�, �)2 = 1
�
∑�

�=1 [��(�, ��)]
2 (6)

where 𝐴𝐴 𝐴𝐴 is the number of short-average profiles used within one observational sample, 𝐴𝐴 𝐴𝐴𝐴𝐴 is the uncertainty in the 
parameter 𝐴𝐴 𝐴𝐴 . The variance subtraction-corrected 𝐴𝐴 𝐴𝐴pm is calculated as

�pm,VS(�) =
1
2

[

�(�)
�(�)

]2

⋅
Var[�′Total(�)] − VarVS[Δ�(�)]

�2Bkg

. (7)

The limitations of this method become obvious when attempting to use it on noisy data. Here, growing uncertain-
ty in parameter error can cause 𝐴𝐴 Var(Δ𝑟𝑟) to become so large that it exceeds 𝐴𝐴 Var(𝑟𝑟′Total) , producing a negative value 
for 𝐴𝐴 𝐴𝐴pm,VS , a non-physical result (see Sections 3 and 4).

2.2. Spectral Proportion Method

These negative values led to the development of the spectral proportion method in Chu et  al.  (2018) which 
eliminates the possibility of negative 𝐴𝐴 𝐴𝐴pm . This method also uses the calculated total variance, and then scales it 
down to estimate the wave-induced energy. As demonstrated in Chu et al. (2018), we first perform a Monte Carlo 
simulation by constructing 1,000 copies of 𝐴𝐴 𝐴𝐴(𝑧𝑧𝑧 𝑧𝑧) , adding normally-distributed noise onto them with a standard 
deviation equal to the measurement uncertainty at that altitude and time, and calculating the perturbations for 
each of these 1000-fields individually. Then, for each altitude, the 1D-FFT of the perturbations is calculated for 
each field and averaged over all 1,000 iterations. The noise floor level is then estimated from the averaged-spec-
tral plots shown in Figures 1a–1d by taking the average of all minima locations above frequency 𝐴𝐴 (𝑓𝑓 ) = 0.1 hr−1 , 
ignoring the highest minima. We only use minima above 𝐴𝐴 𝐴𝐴 = 0.1 hr−1 to avoid the influence of any spectral filters 
applied during the background subtraction, and we ignore the highest minima to ensure that we do not include any 
troughs which are actually above the noise floor.

After the noise floor is determined, the proportion of wave energy occupying the total energy 𝐴𝐴 𝐴𝐴(𝑧𝑧) is calculated as

Figure 1. Plots (a–d) demonstrate the spectral proportion method by showing the development of the noise floor at 
successive altitudes (note the increase in magnitude on the y-axis as altitude increases). Plot (e) shows the altitudinal 
development of 𝐴𝐴 𝐴𝐴(𝑧𝑧) . The data plotted here is from a lidar observation on 21 December 2018.
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�(�) =
���� ����� ����� − ���� ����� ����� �����

���� ����� �����
 (8)

Examples of these averaged spectra and noise floors can be seen in Figure 1 for a variety of altitudes while the 
𝐴𝐴 𝐴𝐴(𝑧𝑧) is illustrated in Figure 1e. Note that the floor-level increases with increasing altitude as the corresponding 

SNR decreases. As a result, 𝐴𝐴 𝐴𝐴(𝑧𝑧) decreases with altitude in general. This 𝐴𝐴 𝐴𝐴(𝑧𝑧) profile is then used to scale down 
𝐴𝐴 𝐴𝐴pm,Total so that the wave-induced 𝐴𝐴 𝐴𝐴pm is obtained as

𝐸𝐸pm,SP(𝑧𝑧) = 𝑝𝑝(𝑧𝑧) ⋅ 𝐸𝐸pm,Total(𝑧𝑧) (9)

This method can, however, introduce positive-bias under high noise, which is discussed further in Sections 3 
and 4.

2.3. Interleaved Method

The common idea of the previous two methods was based on the total variance calculation that includes both 
wave and noise-induced variances, and then each method employed some algorithm to either remove the estimat-
ed noise-variance or scale down the total variance to estimate the wave-induced variance. The interleaved method 
instead eliminates the noise-induced bias altogether by calculating the covariance of simultaneous, collocated 
samples taken in a way such that the noise-terms are driven toward zero. Gardner and Chu (2020) point out that 
this bias elimination would optimally be done using two adjacent lidars, but such a setup would be complex, ex-
pensive, and uncommon. The interleaved method they propose instead introduces a practical way to achieve the 
same bias-elimination using a single lidar (see diagrams in Figure 2). Gardner and Chu (2020) have demonstrated 
interleaving time bins (Figures 2a and 2c) for the covariance calculation but suggested that in many lidar systems 
it may make more sense to apply it to adjacent altitude bins. Here we describe the altitude-interleaving method.

Implementation of this altitude-interleaving process (Figure 2e) is best described by comparing it to a standard 
lidar data processing approach. In the standard data processing, the photon counts from n-adjacent fine bins, 𝐴𝐴 𝐴𝐴𝐴𝐴 
in height, are summed into a single, coarse bin with a height of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 in order to improve the SNR of data. After 
deriving 𝐴𝐴 𝐴𝐴 from these coarse bins across the entire observation, the data is processed to yield perturbations and 
variance. In the interleaved method the bins are summed into two separate groups: one a sum of the odd numbered 
fine bins, and one a sum of the even numbered fine bins. These groupings are then individually processed to gen-
erate two distinct sets of atmospheric parameters 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 from which perturbations 𝐴𝐴 𝐴𝐴′𝐴𝐴𝐴Total and 𝐴𝐴 𝐴𝐴′𝐵𝐵𝐵Total are derived. 

Figure 2. This diagram highlights the advantages of using the time-interleaved method to calculate covariance by comparing it against a ″time-lagged″ approach which 
uses covariance without interleaving the fine bins. (a) and (c) demonstrate that with the interleaved method, the small 𝐴𝐴 𝐴𝐴𝐴𝐴 is preserved even if the sample integration time 
is increased, while (b) and (d) show the large 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 associated with the time-lagged approach. (e) Shows the altitude-interleaved concept.
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Each of these perturbations has the structure of Equation 1, comprised of both wave-induced and noise-induced 
perturbations. We then compute the covariance between these two sets of perturbations as

Cov
[

�′�,Total(��), �
′
�,Total(��)

]

= [�′�(��, �) ⋅ �
′
�(��, �)] + [�′�(��, �) ⋅ Δ��(��, �)]

+[�′�(��, �) ⋅ Δ��(��, �)] + [Δ��(��, �) ⋅ Δ��(��, �)]

 (10)

where 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 are altitudes representing samples A and B and are separated by vertical distance 𝐴𝐴 𝐴𝐴𝐴𝐴 , regardless 
how large the number 𝐴𝐴 𝐴𝐴 is. It is worth noting that 𝐴𝐴 𝐴𝐴′𝐴𝐴 and 𝐴𝐴 𝐴𝐴′𝐵𝐵 , the wave-driven atmospheric perturbations, are highly 
correlated as they are measured at the same time over approximately the same altitude, shifted by a small value 

𝐴𝐴 𝐴𝐴𝐴𝐴 . Therefore, their covariance (first term in the righthand side of Equation 10) should be very similar to the var-
iance (�′)2. In contrast, 𝐴𝐴 ΔrA and 𝐴𝐴 ΔrB are statistically independent random perturbations with zero means so their 
covariance and terms containing them, that is, the last 3 terms in Equation 10, will approach zero when averaging 
over a sufficient number of samples. If the number of samples is sufficiently large, all three terms will drop out, 
leaving a wave term without noise-induced bias.

The difference between the wave-induced variance and covariance depends on the level of correlation between 
𝐴𝐴 𝐴𝐴′𝐴𝐴 and 𝐴𝐴 𝐴𝐴′𝐵𝐵. If 𝐴𝐴 𝐴𝐴′𝐴𝐴 and 𝐴𝐴 𝐴𝐴′𝐵𝐵 are taken simultaneously over the exactly same altitudes, then their covariance is exactly 

equal to the wave-induced variance. With the small 𝐴𝐴 𝐴𝐴𝐴𝐴 shift in altitude (similar to the small shift in time 𝐴𝐴 𝐴𝐴𝐴𝐴 when 
using the time-interleaved method), the covariance is slightly smaller than the variance as theoretically derived 
in Gardner and Chu (2020). However, if the shift gets larger, the covariance will be considerably lower than the 
variance. Early works which suggested the viability of this covariance-substitution (Gardner & Liu, 2014) took 
covariance between samples of alternating coarse-bins, which is termed “time-lagged method” here as shown in 
Figures 2b and 2d, instead of generating two subsamples created at the fine-bin level as is done in the interleaved 
method (Figures 2a and 2c). The downside of this time-lagged approach is that the two coarse-bins are separated 
by a large time shift 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 weakening the correlation in the first term of Equation 10 and yielding a falsely-lower co-
variance. In the time-interleaved method, the data is split so that samples A and B are measuring the same parcel 
of atmosphere over nearly the same time. By minimizing 𝐴𝐴 𝐴𝐴𝐴𝐴 as demonstrated in Figures 2a and 2c, the difference 
between 𝐴𝐴 Var(𝑟𝑟′Total) and 𝐴𝐴 Cov(𝑟𝑟′𝐴𝐴𝐴Total𝐴 𝑟𝑟

′
𝐵𝐵𝐴Total) is minimized. That difference can be corrected by a correction factor 

provided in Gardner and Chu (2020) which is often minimal and can be ignored as long as the interleaved method 
is used properly. This same theory applies when interleaving in altitude (see Figure 2e). By minimizing 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 the 
correlation between 𝐴𝐴 𝐴𝐴′𝐴𝐴 and 𝐴𝐴 𝐴𝐴′𝐵𝐵 is maximized, meaning that the covariance can now be substituted into Equation 3 
to calculate 𝐴𝐴 𝐴𝐴pm free of photon-noise-induced bias:

�pm,INT(�) =
1
2

[

�(�)
�(�)

]2

⋅
���

(

�′�,Total, �′�,Total

)

�2���(�)
 (11)

This flexibility in interleaving-direction allows for the interleaved method to be used on data taken by many dif-
ferent lidar systems. For example, the Na Doppler lidar used as an example in Gardner and Chu (2020) saves its 
raw data in time intervals of 4.5 s, which means the data can be very finely time-interleaved, while the Fe Boltz-
mann lidar used for this study saves its data in time intervals of 1 min, likely too coarse to use a time-interleaved 
approach. However, the Fe Boltzmann lidar saves its counts at a high-vertical resolution of 48 m, allowing the 
interleaved method to be utilized altitudinally.

Moreover, as 𝐴𝐴 𝐴𝐴[Δ𝑟𝑟] = 0, interleaving in derived atmospheric parameters (e.g., wind velocities �, �, � ) is equiv-
alent to interleaving in raw data (e.g., radar power or lidar photon counts). Therefore, when applying the inter-
leaved method to radar measurements, one may choose to interleave high-resolution �, �, � in time or altitude 
domain if interleaving the raw return signals is challenging. By averaging together odd and even (in either time or 
altitude) wind values, respectively, to create two independent samples, for example, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , the covariance 

𝐴𝐴 Cov(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) will be bias-free and can be used in place of variance. Researchers using radar techniques like 
coherent detection may be able to cleverly implement this interleaving idea in the raw data (more analogous to 
the photon count interleaving for lidars).
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3. Error Analyses
Results obtained from these three methods are compared in Figure 3, where four cases are shown—winter and 
summer observations representing high and low SNRs, respectively, with both large and small samples sizes. 
By comparing these cases, one can get a sense for how the accuracy and precision of each method respond to 
increased sample size, as well as how they behave in varying noise levels. Before discussing these results in Sec-
tion 4, it is necessary to introduce the analyses of uncertainty in precision and bias in accuracy.

3.1. Precision (Uncertainty) Analysis

The measurement uncertainty 𝐴𝐴 (Δ𝑟𝑟) of parameter 𝐴𝐴 𝐴𝐴 , caused by photon noise and other random noise in lidar detec-
tion or by similar random noise in radar detection, introduces uncertainties in the second-order statistics (such as 

𝐴𝐴 Var(𝑟𝑟′) and 𝐴𝐴 𝐴𝐴pm ) through the error propagation procedure. If the small errors in 𝐴𝐴 𝐴𝐴2 and 𝐴𝐴 𝐴𝐴2Bkg are neglected, the 𝐴𝐴 𝐴𝐴pm 
uncertainty, 𝐴𝐴 Δ𝐸𝐸pm , is proportional to 𝐴𝐴 ΔVar(𝑟𝑟′) — the uncertainty of 𝐴𝐴 Var(𝑟𝑟′), according to Equation 3:

Δ�pm (�) = 1
2

[

�(�)
�(�)

]2

⋅
ΔVar[�′(�)]

�2Bkg(�)
. (12)

We tabulate the uncertainty equations in Table 1, among which Equations 18–20 consider the photon-noise-in-
duced uncertainty only. That is, only the error propagation from 𝐴𝐴 Δ𝑟𝑟 is considered while any statistical error (see 
below) is omitted. The uncertainty in the variance subtraction method is calculated using the noise-variance given 

Figure 3. Application of the three bias removal methods to Antarctic lidar data, as well as their uncertainties. Shown here are 
the 𝐴𝐴 𝐴𝐴pm for both large and small samples sizes taken from winter data (July, low noise and high SNRs) in (a–d), and summer 
data (January, high noise and low SNRs) in (e–h). (b) and (f) show the noise-induced uncertainties, and (d) and (h) show the 
total uncertainties, each derived as in Table 1. 𝐴𝐴 𝐴𝐴pm is calculated from the atmospheric density perturbations at a binning-
resolution of 1 km and 2 hr, in which the density-gradient form of Equation 4 is used to derive 𝐴𝐴 𝐴𝐴2 and the speed-of-sound 𝐴𝐴 𝐴𝐴𝑠𝑠 
is calculated from the measured Rayleigh temperature. In the legend, VS: variance subtraction, SP: spectral proportion, INT: 
interleaved, and Total refers to the uncorrected total 𝐴𝐴 𝐴𝐴pm .
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by Equation 6, and the spectral proportion method's uncertainty is found using 𝐴𝐴 𝐴𝐴(𝑧𝑧) as in Chu et al. (2018). In the 
interleaved method, the uncertainty is increased because of the reduction in SNR caused by splitting the photon 
counts into two groups. That splitting manifests itself as a 𝐴𝐴

√

2 on 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 thus there is a factor of two in Equation 20. 
This factor decreases the precision of the measurement, necessitating a larger sample size to reduce the overall 
uncertainty.

Equations 18–20 are suitable for estimating the random-noise-induced uncertainty for 𝐴𝐴 𝐴𝐴pm of individual measure-
ments. If regarding each individual measurement of 𝐴𝐴 𝐴𝐴pm as a sample of the overall stationary ergodic signal, then 
the statistical error of sampling needs to be taken into account when taking the sample time average. Gardner and 
Chu (2020) have presented extensive analyses on such overall uncertainties of the estimated sample variances and 
covariances. Here, we apply their results of 𝐴𝐴 ΔVar(𝑟𝑟′) and tabulate the total 𝐴𝐴 Δ𝐸𝐸pm equations as Equation 21 through 
Equation 23. The statistical error component, the first term of Equations 21–23, relates the individually measured 
atmospheric variances to the presumed stationary signal and expresses uncertainty based on the observational 
length and the correlation time of the parameter 𝐴𝐴 𝐴𝐴′, that is, the number of total independent samples taken during 
the observations for the sample average. Driving this statistical error toward zero requires a large number of sam-
ples, so this statistical error introduces a persistent value to the calculated statistical uncertainty.

3.2. Accuracy Analysis With Forward Modeling

While the precision of each method can be assessed from Figure 3 and Table 1, the analysis in Section 3.1 does 
not give much insight into the accuracies of these methods. To address this issue, a forward model was developed 
to test their performance. As the modeled wave energy is known, it is possible to assess any potential systematic 
bias introduced by each of the three methods, in addition to the assessment of their uncertainties in precision.

First, the atmospheric number density and wave-induced perturbations in this density field are modeled as a 
background with wave-induced perturbations:

𝜌𝜌(𝑧𝑧𝑧 𝑧𝑧) = 𝜌𝜌0(𝑧𝑧) + 𝜌𝜌′(𝑧𝑧𝑧 𝑧𝑧). (13)

The background density field 𝐴𝐴 𝐴𝐴0(𝑧𝑧) is taken from the NRLMSISE-00 model (Picone et al., 2002). The perturba-
tions 𝐴𝐴 𝐴𝐴′(𝑧𝑧𝑧 𝑧𝑧) are modeled as a superposition of two plane-waves with downward phase progression (as shown in 

Random-noise-induced uncertaintiesa

Variance subtractionb

ΔVarVS(𝑟𝑟′) =
√

Δ𝑡𝑡
𝜏𝜏obs

VarVS[Δ𝑟𝑟(𝑧𝑧)] (18)
Spectral proportion

ΔVarSP(𝑟𝑟′) =
√

Δ𝑡𝑡
𝜏𝜏obs

Var(𝑟𝑟′Total)[1 − 𝑝𝑝(𝑧𝑧)] (19)
Interleaved method

ΔCov(𝑟𝑟′) = 2
√

Δ𝑡𝑡
𝜏𝜏obs

[Var(𝑟𝑟′Total) − Cov(𝑟𝑟′𝐴𝐴, 𝑟𝑟
′
𝐵𝐵)] (20)

Total uncertainties (including both statistical and random errors)

Variance subtraction

ΔVarVS,tot(𝑧𝑧) =

√

2𝜏𝜏
𝜏𝜏obs

Var2VS(𝑟𝑟′) +
2Δ𝑡𝑡
𝜏𝜏obs

[2VarVS(𝑟𝑟′)ΔVarVS(𝑟𝑟′) + ΔVar2VS(𝑟𝑟′)] (21)
Spectral proportion

ΔVarSP,tot(𝑧𝑧) =

√

2𝜏𝜏
𝜏𝜏obs

Var2SP(𝑟𝑟′) +
2Δ𝑡𝑡
𝜏𝜏obs

[2VarSP(𝑟𝑟′)ΔVarSP(𝑟𝑟′) + ΔVar2SP(𝑟𝑟′)] (22)
Interleaved method

ΔCovtot(𝑧𝑧) =

√

√

√

√

√

√

√

√

2𝜏𝜏
𝜏𝜏obs

Cov2(𝑟𝑟′𝐴𝐴, 𝑟𝑟
′
𝐵𝐵)+

Δ𝑡𝑡
𝜏𝜏obs

[2Cov(𝑟𝑟′𝐴𝐴, 𝑟𝑟
′
𝐵𝐵)ΔVarINT(𝑟𝑟′) + ΔVar2INT(𝑟𝑟′)]

 (23)

Note. 𝐴𝐴 𝐴𝐴 , the correlation time of temperature or density perturbations (∼1 hr); 𝐴𝐴 𝐴𝐴obs , the total observation time length; 𝐴𝐴 Δ𝑡𝑡 , the time resolution of data.
aVariance uncertainties are propagated through Equation 12 to calculate 𝐴𝐴 𝐴𝐴pm uncertainties. b𝐴𝐴 VarVS[Δ𝑟𝑟(𝑧𝑧)] is given by Equation 6 in the text.

Table 1 
Root-Mean-Square (RMS) Uncertainties of the Estimated Variances and Covariances for McMurdo Observations
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Figure 4a). The wave amplitudes, vertical wave numbers, and frequencies are based on observational data from 
McMurdo, Antarctica (Zhao et al., 2017). To replicate the growth of gravity wave strength with altitude due to 
exponentially decreasing background density, the wave amplitudes scale as

𝜌𝜌′(𝑧𝑧)
𝜌𝜌′(𝑧𝑧0)

=

√

𝜌𝜌0(𝑧𝑧)
𝜌𝜌0(𝑧𝑧0)

 (14)

where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴0 denote altitude and a reference altitude, respectively.

Next, we simulate the photon return from a lidar shooting vertically into this modeled density field. The photon 
counts are generated by

�Wave(�, �) =

(

�20
�2

)

⋅�(�0) ⋅
�0(�)
�0(�0)

⋅
[

1 + �′rel(�, �)
]

 (15)

where the relative perturbations are defined as

𝜌𝜌′rel(𝑧𝑧𝑧 𝑧𝑧) ≡
𝜌𝜌′(𝑧𝑧𝑧 𝑧𝑧)
𝜌𝜌0(𝑧𝑧)

. (16)

Equation 15 is essentially a modification of the general lidar equation for Rayleigh scattering as written in Chu 
and Papen (2005) with the addition of the density perturbations. 𝐴𝐴 𝐴𝐴(𝑧𝑧0) is representative of typical photon counts 
observed by the Fe Boltzmann lidar at a reference altitude (typically around 𝐴𝐴 𝐴𝐴0 = 30 km ). After including back-
ground photons resulting from the sunlight or star light, we get

𝑁𝑁Total(𝑧𝑧𝑧 𝑧𝑧) = 𝑁𝑁Wave(𝑧𝑧𝑧 𝑧𝑧) +𝑁𝑁Bkg(𝑧𝑧). (17)

𝐴𝐴 𝐴𝐴Bkg represents the photon counts from these unwanted sources and is estimated by averaging the Fe Boltzmann 
lidar's photon counts from 150–180 km over many observations during the appropriate season. Poisson-distribut-
ed noise is then added to 𝐴𝐴 𝐴𝐴Total(𝑧𝑧𝑧 𝑧𝑧) by using the photon count at each altitude-time grid point as the rate param-
eter for a Poisson-distributed sampling, resulting in 𝐴𝐴 𝐴𝐴received(𝑧𝑧𝑧 𝑧𝑧) , which is a matrix of noisy counts resembling 
those received by the photon counting system.

𝐴𝐴 𝐴𝐴received(𝑧𝑧𝑧 𝑧𝑧) is then treated as if it were a real lidar observation and processed as usual using all three bias-remov-
al/elimination methods. 𝐴𝐴 𝐴𝐴Wave(𝑧𝑧𝑧 𝑧𝑧) is processed identically to 𝐴𝐴 𝐴𝐴received to generate a reference for the true, modeled 

𝐴𝐴 𝐴𝐴pm in the field with no bias from photon noise. This simulation process was repeated with the same wave spectra 
many times, each iteration with distinct, random noise, and the results from each method were averaged to create 
Figure 5. We used the same spectra in generating the wave-field in each of these plots to satisfy the stationary 
signal requirement (discussed in Section 1) for averaging large amounts of data, which also serves to minimize 
any additional effects which could obscure the accuracy of the methods.

Figure 4. The relative perturbation field generated by the forward model. (a) Shows the simulated perturbation field induced 
by atmospheric waves, and (b) shows the perturbations derived from the noisy density. This field is the superposition of two 
plane waves with frequencies and vertical wavenumbers � = 0.182 hr−1 , � = 0.125 km−1 and � = 0.235 hr−1  , � = 0.160 km−1 .
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4. Comparison of Three Methods
We now analyze how the three methods perform under different conditions of SNR and number of samples, in 
terms of their accuracy and precision. We define accuracy as how close the results are to the true atmospheric 

𝐴𝐴 𝐴𝐴pm and precision as how well the results are determined (with no reference to the true values) as well as how 
repeatable the results would be (Bevington & Robinson, 2003). In this dataset, the summer measurements have 
lower SNRs than winter due to the full sunlight under which the data was collected. Additionally, as this data is 
derived from Rayleigh scattering, higher altitudes correspond to lower SNRs due to the exponential decrease of 
atmospheric number density with increasing altitude. Both temperature and density can be derived from these 
Rayleigh scattering signals. For this study, we use density, but these same 𝐴𝐴 𝐴𝐴pm values can also be derived from 
temperature. This relation is explored further in Appendix A.

We first compare the precision of these methods under various conditions. The precision of each method is large-
ly determined by SNR and is increased with the use of a greater sample size (as the uncertainty is decreased). 
This is evidenced by Equations 18–23, as the 𝐴𝐴 Δ𝑟𝑟 term (which reflects SNR) scales directly with the uncertainty, 
and the 𝐴𝐴 Δ𝑡𝑡

𝜏𝜏obs
 term scales down this uncertainty as the number of observations increases. In Figures 3a and 3e, the 

variance subtraction and the interleaved method cannot be scientifically interpreted as shown due to their negative 
𝐴𝐴 𝐴𝐴pm values. The spectral proportion method appears to show a realistic trend, even when using the small sample 

size. In Figures 3c and 3g, as more samples are incorporated, the variance removal and spectral proportion meth-
od continue to show similar, yet more precise trends. The interleaved method now yields nearly-entirely positive 
results which trend at a lower 𝐴𝐴 𝐴𝐴pm than the spectral proportion derived results.

We then assess the accuracy of the methods using the forward modeled results in Figure 5. The performance 
of the variance subtraction method in all conditions clearly shows that this method has low accuracy under 

Figure 5. Application of the three bias-removal/elimination methods to the forward-modeled lidar density measurements. 
Density derivation, 𝐴𝐴 𝐴𝐴pm calculation, and plotting procedures are identical to those used for Figure 3 except the data used here 
is from the forward model introduced in Section 3.2. The profile labeled “Forward Model” in each subpanel shows the 𝐴𝐴 𝐴𝐴pm as 
calculated directly from the modeled wave field, which is treated as the reference, that is, a bias-free profile.
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high-noise due to its negative values in Figure  3 and its strong departure 
from the modeled 𝐴𝐴 𝐴𝐴pm seen in Figure 5. While the spectral proportion meth-
od yields a precise profile in all cases, Figures 5b and 5d show that it over-
estimates 𝐴𝐴 𝐴𝐴pm when the SNR becomes low, as evidenced by the departure 
from the modeled 𝐴𝐴 𝐴𝐴pm . While the interleaved method showed an especially 
noisy result under a small sample-size, Figure 5 shows that this noisy profile 
still generally centers around the modeled 𝐴𝐴 𝐴𝐴pm , with the same remaining true 
when using a larger-sample size.

The negative-bias of variance subtraction method is due to the uncertainty 
in the estimation of the noise-variance. As the noise-variance is computed 
using the temperature or density error as in Equation  6, large uncertain-
ties in these error values inevitably occur near the top of the measurement 
(where the SNR has significantly declined) which cause the noise-variance 
to increase dramatically. When subtracted from total variance via Equation 7 
these often yield negative variances and thus, physically-impossible nega-
tive 𝐴𝐴 𝐴𝐴pm values. Alongside the positive bias caused by the second term of 
Equation 2, noise can be introduced by the third term if the sample-size was 
insufficient to drive it close to zero. While these tests show poor performance 
from the variance subtraction method at higher-altitudes, the plots still show 
that it is a valid approach under high-SNRs. It has been successfully utilized 
many times before for lower-altitude studies (e.g., Chu et  al.,  2009; Duck 
et al., 2001; Yamashita et al., 2009).

The positive bias of spectral proportion method seen in Figures 3g and 5d 
is caused by high-noise in the initial sample contaminating the spectra at 
a given altitude. Looking at Figures  1a–1d, there is a regularly occurring 
peak near 𝐴𝐴 𝐴𝐴 ≈ 0.18 hr−1 , yet Figure 1d shows additional peaks which are not 
present at the other altitudes. These could be due to a localized wave present 
at this altitude throughout the signal, but extensive testing and modeling has 
revealed that these peaks can be caused by strong noise present in the obser-

vation. As this noise-induced peak disguises itself as a wave-induced peak, any noise-floor determination method 
which captures the energy in the wave-peaks will also capture the energy in the noise-induced peak, causing an 
overestimation in the wave-energy calculated in the 𝐴𝐴 𝐴𝐴(𝑧𝑧). This systematic underestimation of the noise floor re-
flects how strong noise is able to cause a positive bias in the form of an overestimated 𝐴𝐴 𝐴𝐴(𝑧𝑧) when using the spectral 
proportion method, leading to an overestimated 𝐴𝐴 𝐴𝐴pm on noisy data.

The interleaved method does not suffer from either positive or negative bias and generally remains centered 
around the modeled 𝐴𝐴 𝐴𝐴pm . Its core drawback is the increased uncertainty due to the splitting of the photon counts 
into two subsamples and additional noise contributed by the final three terms in Equation 10 (if they have not 
been driven to zero). The bin splitting reduces the signal level in each coarse bin by half, increasing overall uncer-
tainty by 𝐴𝐴

√

2 . This increase in uncertainty is significant, and, coupled with the last three terms in Equation 10, can 
often lead to the derived 𝐴𝐴 𝐴𝐴pm displaying negative values. Without enough samples to beat down the uncertainty 
to a certain level and zero-out the noise terms from Equation 10, single-observation results from the interleaved 
method may not be scientifically meaningful. Additionally, remaining noise-terms which did not approach zero 
due to a small sample size will affect the resultant 𝐴𝐴 𝐴𝐴pm with the capability to strongly offset the value calculated 
by the covariance. The stronger the noise-terms, the more samples are needed to drive the noise terms toward zero 
and remove their influence. Figure 6 further illustrates these trends by showing the behavior of an entire month of 
summer observations which is overlayed with its mean. For many of these individual runs, negative values may 
occur at many altitudes, but given a large enough samples size, the mean value becomes positive. However, even 
with a large number of samples as shown in Figure 3g, the uppermost bin is still negative, and obviously deviates 
from the trend established by the bins below. This result reinforces that lower-SNR increasingly necessitates the 
use of a larger sample size to compensate for the bin-splitting-induced uncertainty increase as well as to facilitate 
the driving of the noise terms toward zero. Appendix B further elaborates on the development of this precision 
increase with the increasing sample size.

Figure 6. Two monthly 𝐴𝐴 𝐴𝐴pm calculations are plotted. The 𝐴𝐴 𝐴𝐴pm calculated for 
an individual run is plotted alongside its monthly mean for both December and 
January from a single summer season. Additionally, plotted in (c and d) are the 
lower 10 km for easier comparison.
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5. Comparison to Previous Results
We now compare the performance of the interleaved method to that of the spectral proportion in Figure 7 by 
replicating results from a previously published study. In Chu et al. (2018), lidar data from 2011 to 2015 taken by 
the McMurdo Fe Boltzmann lidar was processed with the spectral proportion method to yield 𝐴𝐴 𝐴𝐴pm . One of the 
major findings from that study was the strong asymmetry between summer and winter 𝐴𝐴 𝐴𝐴pm . That study found 
significantly stronger 𝐴𝐴 𝐴𝐴pm in winter as opposed to summer, with this pattern repeating annually.

The comparison in Figure 7 has demonstrated the repeatability of the seasonal asymmetry observations. The 
interleaved method generally agreed with the trends attained from the spectral proportion method. While some 
of these interleaved values are negative, it is now known from Section 4 that we must average over many samples 
(or apply a fit, as we do here) to reveal the true trend. Not only are the observational results replicated by the 
interleaved method, but since the interleaved method is more accurate in the high-noise summer and does not 
overestimate 𝐴𝐴 𝐴𝐴pm like the spectral proportion method, the summertime 𝐴𝐴 𝐴𝐴pm derived using the interleaved method 
yields lower summer minimums, and in the winters, a slightly higher maximum. This result means that the major 
conclusions of Chu et al. (2018) are strengthened by the use of the interleaved method.

6. Conclusions and Recommendations
Random-noise-induced biases are inherent issues to the accurate derivation of second-order statistical parameters 
(such as temperature, wind and species variances, momentum, heat and constituent fluxes, potential and kinetic 
energy densities of atmospheric waves, and power spectrum estimates) from lidar and radar measurements. As 
the boundaries of existing research expand, powerful techniques for removal of such biases must be developed to 
take full advantage of data collection campaigns. The variance subtraction, spectral proportion, and interleaved 
methods are all viable means to correct for the biases, yet the performance of each method varies depending on 
the conditions under which they are applied.

Based on the comparisons using the lidar observational datasets from Antarctica as well as the forward-mod-
eled cases, we draw the following conclusions. The variance subtraction method is best used with high-SNR 
observations, as it is easily biased-negatively by noise in the data. It provides a precise, yet not always accurate, 
measurement of atmospheric variance even with a relatively-small sample size. The spectral proportion method 
is more robust, yielding precise and accurate measurements of variance in significantly noisier data than the 
variance subtraction method, and also does not rely on a large sample size (Chu et al., 2018). However, it begins 
to display a positive-bias under high-noise conditions. The interleaved method is the only method which will 
intrinsically not have a bias because it eliminates the random-noise-induced biases utilizing two statistically 
independent datasets that cover the same altitude range and time period (Gardner & Chu, 2020). However, such 
improved accuracy is attained at the price of reduced precision, necessitating a much-larger sample size than the 
others even for high-SNR measurements.

This work is the first demonstration of altitude/range-interleaved method for deriving second-order statistics, 
following the original proposal by Gardner and Chu  (2020). Interleaving in altitude (or range) bins provides 
two statistically independent samples over the same time period and altitude range even if the original raw data 
were not saved in high temporal resolutions but sufficiently high spatial (range) resolutions. Therefore, the 

Figure 7. Comparison of year-to-year 𝐴𝐴 𝐴𝐴pm (altitudinal average from 30–50 km) using the interleaved and the spectral proportion methods. Overlaid are harmonic 
fittings, calculated as in Equation 19 of Chu et al. (2018) and Equation 4 of Li et al. (2020).
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altitude/range-interleaved method provides a suitable solution to many current and historic lidar and radar data-
sets for accurately deriving variances, fluxes, wave energy densities, and power spectrum estimates, etc.

Given the overall considerations we recommend applying the interleaved (either in time or in altitude/range bins) 
method and the spectral proportion method in real applications because they are superior to the noise subtrac-
tion method as demonstrated in this work. When the application goals are to derive statistically mean profiles 
with high accuracy and/or there are a large number of samples, the interleaved method would be the best choice 
because it inherently eliminates the noise-induced biases to give the highest accuracy while the large sample 
size reduces uncertainties to ensure sufficient precision as well. However, if the application goals are to derive 
second-order statistics within a small number of samples and then study the time evolution of such statistics over 
month, season, and/or year (i.e., non-stationary signals in longer time periods), the spectral proportion may be a 
better choice for its higher precision and the ability to handle small sample sizes with a caveat of potentially pos-
itive-biases in high-noise conditions. Applying the proper bias-removal method can unlock the full potential of a 
dataset, allowing retrieval of second or higher-order parameters into lower-SNR regions of the data. Additionally, 
it can reveal trends in the data that may otherwise be concealed by the bias, such as the seasonal asymmetry 
demonstrated prior, or altitudinal trends which have not yet been discovered.

Appendix A: Considerations on Employing Temperature Versus Density for Rayleigh 
Lidar
Using Rayleigh lidar data, the gravity wave potential energy mass density 𝐴𝐴 𝐴𝐴pm can be calculated from the relative 
perturbations of atmospheric density or temperature. If done properly, the two will yield the same results. To de-
rive temperatures using the Rayleigh integration technique (Chu et al., 2002) a seed temperature at the top of the 
altitude range (generally lower SNR) must be used to calculate each point along the altitude profile. The deviation 
of the empirical seed temperature from the actual value as well as the photon noise at the seeding altitude could 
result in noisy Rayleigh temperature profiles in the first several scale heights from the seeding point. In contrast, 
the relative density profile is derived using a bin at the bottom of the altitude range where the SNR is generally 
higher, reducing the chance of reference-bin-noise propagation. More importantly, no seeding temperature is 
needed for the relative density profiling, thus further removing uncertainties. However, the knowledge of the 
background temperature profile is still necessary in order to calculate the speed of sound 𝐴𝐴 𝐴𝐴𝑠𝑠 for the 𝐴𝐴 𝐴𝐴pm computa-
tion (see Equations 3 and 4 in Section 2).

While the atmospheric density may seem superior overall in the 𝐴𝐴 𝐴𝐴pm derivation, it is often preferred by many 
authors to use temperature for 𝐴𝐴 𝐴𝐴pm studies, as density (e.g., like minor species densities) can reflect high-rate 
chemical fluctuations which add additional perturbations to the signal, obscuring the wave dynamics. Fortunate-
ly, Rayleigh lidars measure the total atmospheric number density, which is dominated by the chemically stable 

𝐴𝐴 N2 and 𝐴𝐴 O2 ; therefore, the Rayleigh lidar-measured number density does not suffer the chemical fluctuations. Both 
temperature and density are reasonable approaches for utilizing the Rayleigh lidar data for 𝐴𝐴 𝐴𝐴pm studies, as long 
as the above effects are considered and avoided. It can be helpful to calculate the results via both methods and 
compare the two, as they should agree if applied properly. This can be seen in Figure A1, where the results are 
plotted from the Fe Boltzmann/Rayleigh lidar. In this figure, it is clear that even though the uncorrected total 𝐴𝐴 𝐴𝐴pm 
values derived from relative density and temperature perturbations may not agree, the corrected wave-induced 

𝐴𝐴 𝐴𝐴pm results derived from both parameters using either the spectral proportion method or the interleaved method 
generally agree with each other.
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Appendix B: Development of Precision With Sample Size in the Interleaved Method
A primary downside of the interleaved method is the reduction of precision caused by splitting the samples into 
two groups. This is best countered by increasing the number of samples used for the measurements, which re-
duces the uncertainties roughly by a factor of 𝐴𝐴 1

√

𝑘𝑘
 , where 𝐴𝐴 𝐴𝐴 is the number of independent samples used (Bevington 

& Robinson, 2003). Figure B1a demonstrates this by showing the development of interleaved profiles with the 
inclusion of additional samples, where it can clearly be seen that additional samples reduce the noise-induced 
uncertainties, particularly those present at high altitudes where the SNRs are low. To quantify the uncertainty re-
duction, we define the root-mean-square (RMS) errors as the difference between the 𝐴𝐴 𝐴𝐴pm derived from all samples 
and the 𝐴𝐴 𝐴𝐴pm derived from a smaller sample size. Such RMS errors are similar to the total uncertainties given in 
Table 1, which include both the statistical errors and the random-noise-induced errors. Figures B1b and B1c show 
that the RMS errors in the altitude ranges of 30–69 km and 30–50 km, respectively, decrease with the increasing 
sample length in hours at a trend proportional to 𝐴𝐴 1

√

𝑘𝑘
 , with only minor deviations from this trend due to non-uni-

form SNRs in individual samples. For our data in July at Antarctica, after 200 hr of data were averaged (i.e., 100, 
2-hr samples), the uncertainty was already decreased by ∼80%. For any observations, the exact number of sam-
ples needed to improve the measurement precision depends on the general quality of the actual data, especially its 
SNRs, as well as the correlation time of the measured atmospheric parameters (see Table 1).

Figure A1. Demonstration of the interleaved and spectral proportion methods applied to 𝐴𝐴 𝐴𝐴pm derivations using relative 
temperature and density perturbations, respectively. Results from the variance subtraction method are not plotted as its values 
are invalid for much of the range. (a) 𝐴𝐴 𝐴𝐴pm profiles from 186 hr of data from July 2019 at McMurdo. (b) 𝐴𝐴 𝐴𝐴pm profiles from 
180 hr of data from January 2019 and 2020 at McMurdo. The density-𝐴𝐴 𝐴𝐴pm data here is calculated identically to the other 𝐴𝐴 𝐴𝐴pm 
figures, and the temperature-𝐴𝐴 𝐴𝐴pm is derived at the same resolution (𝐴𝐴 Δ𝑧𝑧 = 1 km, Δ𝑡𝑡 = 2 hr ) as the density product.
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Data Availability Statement
The data shown in this work can be downloaded online from https://data.mendeley.com/datasets/5cryh29t67/3.
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